Воздух, находящийся в закрытых помещениях, таких как комнаты, подсобные помещения или лаборатории, должен обновляться несколько раз в час. Это необходимо для обеспечения приемлемого уровня качества и чистоты воздуха. Кратность обновления воздуха, которая определяется количеством замен, имеет значение для расчета скорости воздухообмена в воздуховодах.
Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты
Вентиляционная сеть представляет собой основной элемент любой системы вентиляции, кондиционирования и вытяжной системы. Она включает в себя воздуховоды, арматуру и сетевое оборудование. Примечательно, что в настоящее время отсутствуют стандартизированные документы, которые бы четко определяли оптимальную скорость воздуха в воздуховодах. Это связано с тем, что диапазоны рекомендуемых скоростей очень широки и зависят от множества индивидуальных факторов, таких как категория и предназначение здания, материал, из которого изготовлены воздуховоды, их форма, наличие изоляции, а также регулирующие и дросселирующие устройства, которые могут влиять на характеристики системы. Для повышения качества проектирования и оптимизации работы систем вентиляции важно расширить доступный алгоритм выбора оптимальной скорости воздушного потока для основных типов зданий и помещений, а также выработать типовые решения, которые найдут применение на практике.
Таким образом, вентиляционная сеть, которая включает в себя воздуховоды, арматуру и сетевое оборудование, является важнейшей частью любой системы по очистке, кондиционированию и вентиляции воздуха. Нельзя выделить единую формулу для определения оптимальной скорости воздуха в воздуховодах, поскольку существующий диапазон скоростей очень разнообразен и зависит от множества факторов, таких как класс здания, его назначения, конструкции и материала воздуховодов, их изоляции и других элементов, которые могут повлиять на общий воздухоборот.
В связи с вышеизложенным, актуально продолжать работу над созданием точных алгоритмов для вычисления оптимальной скорости воздушного потока в воздуховодах, которые подходят для различных типов зданий и сооружений, и разрабатывать стандартизированные решения, применимые в реальных условиях.
Выбор скорости воздуха в воздуховодах систем вентиляции, кондиционирования, аспирации и противодымной защиты
Автором данной секции является В. Н. Боломатов, инженер и почетный мастер-строитель России.
Вентиляционная сеть, далее называемая сетью воздуховодов, является важнейшим элементом любой системы вентиляции, кондиционирования и вытяжной системы. В рамках разработки соответствующих проектов отсутствуют четкие нормативные документы, которые бы устанавливали оптимальную скорость поступающего воздуха в воздуховод, так как диапазоны значений для скоростей являются довольно широкими и варьируются от 0,3 до 30,0 м/с. Эти параметры напрямую зависят от множества индивидуальных условий на сети, таких как класс здания и его назначение, материал и форма воздуховода, его изоляционные качества, наличие различных фитингов и дроссельных устройств, а также от множества других факторов. В большинстве случаев применяются инструкции и руководства, разработанные в 1965-1970 годах, которые в основном касаются минимальных скоростей для обеспечения устойчивого давления в сети. Тем не менее данные рекомендации чаще всего ориентированы на использование относительно недорогих вентиляторов низкого и среднего давления и не учитывают проектные и экономические целесообразности. Кроме того, рекомендуемые минимальные скорости зачастую оказываются недостаточными для больших промышленных сооружений, не обеспечивая требуемого уровня воздухообмена в дорогостоящих жилых или общественных зонах. Далее мы рассмотрим работу воздуховодов, которые обычно используются в проектировании систем.
Воздуховоды. Общие сведения
Проектирование сети вентиляции, как правило, начинается с создания аксонометрического чертежа, в который включается архитектурное расположение трубопроводов. Он также включает длину каждого участка сети, а также выбранную скорость потока, на основании которой впоследствии рассчитываются участки и возможные потери давления. При этом скорость потока выбирается с учетом конструктивных и экономических факторов, связанных с проектом. Трубопроводы вместе с фитингами используются стандартного типа, и могут быть выполнены как в прямоугольной, так и в круглой форме. В большинстве случаев они изготавливаются из металлических материалов, но при использовании воздуховодов, выполненных из других конструкций, необходимо учитывать шероховатость стенок.
Хотя прямоугольные воздуховоды менее удобны и имеют более высокие затраты на монтаж, они все же остаются актуальными в тех случаях, когда пространство для прокладки воздуховодов ограничено, особенно в помещениях с подвесными потолками. Важно отметить, что максимальное соотношение сторон прямоугольного сечения не должно превышать 1:4, а в системах, осуществляющих естественный отвод воздуха, это соотношение не должно превышать 1:2. Круглые воздуховоды, хотя и более громоздкие, предоставляют лучшие аэродинамические характеристики, издают меньший уровень шума и более удобны в процессе проектирования и монтажа, что делает их более распространенными в строительной практике.
Термин «эквивалентный диаметр» используется для взаимозаменяемости круглых и прямоугольных воздуховодов. Эквивалентный диаметр для прямоугольного воздуховода определяется как диаметр воздуховода, при котором потери на трение были бы эквивалентны. На практике именно круглые воздуховоды предпочтительнее использовать в системах вентиляции, кондиционирования и вытяжки. Аэродинамические расчеты таких систем можно выполнять, используя специальные программные средства или справочные таблицы. Для расчета динамического давления часто применяются диаграммы, точность которых составляет 3-5%, что является допустимым значением для некоторых расчетных пунктов. Если же в системе происходит транспортировка воздуха при температуре выше 50 °C, расчет в этом случае требует дополнительных корректировок.
Общие принципы расчета
Трубы для вентиляции могут производиться из различных материалов, как пластиковых, так и металлических, и иметь разные формы — круглая или прямоугольная. Именно строительные нормы определяют размеры вытяжных устройств, тогда как объем вытяжного воздуха может значительно варьироваться в зависимости от назначения и типа используемого помещения. Расчет объема воздухопотока осуществляется с использованием специальных формул, причем их выбор зависит от конкретной ситуации. Стандарты и правила разрабатываются, в частности, для социальных объектов — больниц, школ и детских садов, которые подробно описаны в соответствующих сводах правил — СНиПах. Однако четких нормативов для скорости движения воздуха в воздуховодах не существует, а только рекомендованные значения и правила как для принудительной, так и для естественной вентиляции в зависимости от назначения, которые можно найти в соответствующих СНиПах.
Скорости воздуха измеряются в метрах в секунду. В соответствии с рекомендациями для естественной вентиляции допустимая скорость не должна превышать 2 м/с, а минимально допустимое значение составляет 0,2 м/с. В противном случае качество обновления газовой смеси в помещении не будет удовлетворительным. Максимально допустимые значения для принудительной вентиляции находятся в диапазоне от 8 до 11 м/с для главного воздуховода, так как превышение этих значений может привести к избыточному давлению и сопротивлению в системе.
Таблица, приведенная ниже, служит основным ориентиром — для обеспечения надежной системы вентиляции необходимо учитывать указанные в ней скорости. Заполняя соответствующие данные в таблице, учитывайте, что скорость воздуха должна быть тщательно расчитана, чтобы обеспечить корректность и эффективность работы всей вентиляционной системы.
Формулы для расчета
Чтобы выполнить все расчеты, требуются определенные данные. Для вычисления скорости движения воздуха используйте следующую формулу:
ϑ = L / (3600 * F), где:
- ϑ — скорость движения воздуха в вентиляционном канале, выраженная в м/с;
- L — массовый расход воздуха (в м³/ч) на участке, для которого осуществляется расчет;
- F — площадь поперечного сечения воздуховода, измеряемая в м².
Эта формула используется для нахождения скорости воздуха в воздуховоде до получения его фактического значения. Остальные данные также могут быть получены с помощью этой формулы. Например, для нахождения расхода воздуха формула преобразуется так:
L = 3600 x F x ϑ.
В некоторых случаях подобные вычисления могут быть сложными или занимать много времени. Тогда разумным решением станет использование соответствующего калькулятора. В широкой сети доступны множество программ этого типа. Инженерным компаниям целесообразно установить специализированные калькуляторы, которые отличаются высокой точностью — они учитывают толщину стенки при расчете, используют более точные значения числа π и точно рассчитывают расход воздуха и так далее.
Знание скорости воздуха особенно полезно для расчета объемного расхода газовой смеси, определения динамического давления на стенки трубы, а также для анализа потерь на трение и сопротивления в системе.
Несколько полезных советов и замечаний
Согласно полученным расчетам, скорость воздуха в воздуховодах увеличивается пропорционально уменьшению диаметра трубы. Это и приводит к нескольким преимуществам:
- снижается вероятность потерь или необходимости в установке дополнительных вентиляционных трубопроводов для обеспечения необходимого объема воздуха, если размеры помещения недостаточны для прокладки воздуховодов большего диаметра;
- прокладка трубопроводов меньшего диаметра представляет собой более простое и удобное решение в большинстве случаев;
- при уменьшении диаметра воздуховода снижается его себестоимость, что также удешевляет цену на дополнительные элементы, такие как клапаны и заслонки;
- меньшие размеры труб способствуют большей гибкости монтажа, что позволяет располагать их с учетом внешних факторов, которые могут ограничивать установку.
Примечание: Однако необходимо помнить, что при использовании воздуховодов меньших размеров увеличивается скорость воздуха, что, в свою очередь, приводит к повышению динамического давления на стенки воздуховода. Это создает дополнительное сопротивление в системе, и, как следствие, потребует использования более мощных вентиляторов и увеличения последующих затрат. Таким образом, перед установкой воздуховодов важно тщательно произвести расчеты, чтобы оптимизация не привела к излишним расходам или даже убыткам, соответствующим требованиям СНиП, что делает невозможным введение объекта в эксплуатацию.
Расчет скорости воздуха в воздуховодах
Вы можете обратиться за покупкой пластиковых деаэраторов, вентиляторов, фильтров металлизации ФВГ, скрубберов, гальванических ванн, экраны, бортовые экстракторы, резервуары, реакторы и растворители для лакокрасочной отрасли. Мы предлагаем разработку и производство пластиковых изделий как оптом, так и в розницу, при этом можем изготовить продукцию как по стандартным размерам, так и по индивидуальным планам для вашего завода или предприятия. Мы предлагаем широкий ассортимент продукции нашей компании «Пласт-Продукт».
Параметры микроклимата определяются согласно ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. Созданный свод правил СП 60.13330.2012 был разработан на основе существующих норм. Скорость движения воздуха в воздуховодах должна соответствовать актуальным стандартам.
Воздуховоды химически стойкие
В этом разделе представлены как цилиндрические, так и прямоугольные воздуховоды. Специалисты и менеджеры компании Plast Product готовы помочь вам в выборе и расчете стоимости интересующего вас товара. Воздуховоды используются в промышленных и бытовых установках и обладают высокой стойкостью к воздействию химических веществ и коррозии.
Промышленные коррозионностойкие и химически стойкие вентиляторы
Промышленные воздуховоды от Plast-Product, устойчивые к химическим веществам, предназначены для применения на гальванических заводах и предприятиях, где происходят процессы с агрессивными парами. Эти устройства изготавливаются из химически стойких пластиков, таких как полипропилен, ПНД, ПВХ и ПВДФ. Выбор материала и его свойства производятся на основании требований заказчика.
Гальванические волокнистые фильтры (ФВГ, ФКГ)
Гальванические волокнистые фильтры предназначены для высокоэффективной очистки выхлопных газов от жидких и водорастворимых твердых частиц, а также аэрозольных паров в сферах гальваники, травления и химической промышленности, а также из вытяжных шкафов и лабораторий, из моечных камер для обработки поверхностей. Такой продукт также может быть применен в пищевой промышленности.
Скруббер
Компания «Пласт-Продукт» занимается производством абсорбционных скрубберов и центробежного абсорбционного оборудования, которые используются для очистки воздуха от пылегазовых смесей и токсичных испарений.
Если вас интересует стоимость изготовления того или иного продукта, направьте нам техническую спецификацию на адрес info@plast-product.ru или позвоните по телефону 8 800 555-17-56.
Формула расчёта скорости воздуха в воздуховоде
Обычно скорость движения воздуха в воздуховоде определяется по следующей формуле:
- v = G/S, где G обозначает расход воздуха в воздуховоде, а S — площадь его сечения.
При применении данной формулы необходимо тщательно учитывать расход воздуха и размер площади сечения. Как правило, расход указывается в м³/ч, а диаметр воздуховода измеряется в миллиметрах, то есть площадь поперечного сечения указывается в мм². Замена значений между м³/ч и мм² недопустима. Чтобы получить скорость воздуха в м/с, необходимо будет перевести расход воздуха в кубических метрах в секунду (м³/с) и площадь поперечного сечения в квадратные метры (м²).
Пример расчёта скорости воздуха в воздуховоде
Рассмотрим пример. Для воздуховода размерами 600×300 с расходом воздуха 2000 м³/ч получим следующий результат:
- Переведем размеры воздуховода в метры: 0,6 м и 0,3 м.
- Определяем площадь сечения: S = 0,6 · 0,3 = 0,18 м².
- Переводим расход воздуха: G = 2000 м³/ч = 2000/3600 м³/с = 0,56 м³/с.
- Вычисляем скорость воздуха: v = G/S = 0,56/0,18 = 3,1 м/с.
Расчёт скорости воздуха в круглом воздуховоде
Формула для расчета скорости воздуха в воздуховоде адаптируется к круглым воздуховодам с учетом стандартных диаметров следующим образом:
- v = 354·G/D², где G — расход воздуха в м³/ч, а D — диаметр воздуховода в миллиметрах.
Предположим, что расход воздуха составляет 550 м³/ч в воздуховоде диаметром 200 мм.
В системах общей вентиляции рекомендуется не превышать скорость 4 м/с, поскольку это может вызывать шум в воздуховоде и увеличивать сопротивление воздуха. Поэтому в данном примере уместно использовать воздуховод диаметром 250 мм, так как для него будет получено значение: v = 354*550/250² = 3,1 м/с.
Рекомендованные нормы скорости воздухообмена
На этапе проектирования любого строительного проекта каждая зона здания должна рассчитываться индивидуально. В производственных помещениях — это отдельные участки, в многоэтажных домах — отдельные квартиры, а в одноквартирных зданиях — отдельные комнаты.
Перед установкой системы вентиляции необходимо проанализировать ход и размеры главных труб, геометрию вентиляционных каналов и выбрать оптимальные размеры труб.
Размеры воздуховодов, установленных в ресторанах и других общественных местах, не должны вас смущать, так как они предназначены для транспортирования значительного объема загрязненного воздуха.
Расчеты потоков воздуха, как в жилых, так и в промышленных зданиях, являются одной из самых сложных задач, поэтому их следует проводить опытным и квалифицированным специалистам.
Рекомендованные скорости движения воздуха в воздуховодах указаны в СНиП, являясь неопровержимой основой для проектирования или ввода здания в эксплуатацию.
В таблице представлены параметры, которые необходимо учитывать при строительстве системы вентиляции. Значения обозначают скорость движения воздуха в штатных единицах измерения — м/с.
Следует отметить, что скорость движения воздуха в помещении не должна превышать 0,3 м/с.
За некоторыми исключениями для временных технических условий (например, во время ремонта или установки строительного оборудования, и т.д.) данные значения не должны превышать установленные нормы более чем на 30%.
Также в крупных помещениях (таких как гаражи, производственные цеха, склады) часто внедряют две вентиляционные системы вместо одной.
При этом, учитывая, что нагрузка уменьшается в два раза, скорость воздуха также устанавливается таким образом, чтобы она покрывала 50% общего расчетного движения воздуха (либо для удаления загрязняющих элементов, либо для подачи свежего воздуха).
В случае возникновения непредвиденных обстоятельств может потребоваться резкое изменение в движении воздуха или полное отключение системы вентиляции.
Например, в целях противопожарной безопасности скорость потока воздуха должна быть снижена до минимальных значений, чтобы избежать распространения пламени и дыма в соседние помещения во время пожара.
Поэтому в воздуховодах и переходниках устанавливаются специальные заслонки и регуляторы.
Тонкости выбора воздуховода
Результаты аэродинамических расчетов могут быть использованы для определения размеров кругов и прямоугольных сечений, а также для выбора устройства принудительной подачи воздуха (вентилятора) и оценки потерь давления, которые возникают при движении воздуха по воздуховоду.
Знаем, расход и скорость воздушного потока, можно определить размер сечения воздуховода, используя обратную формулу для вычисления расхода воздуха:
S = L / (3600 * V).
Полученный результат позволит вычислить диаметр:
D = 1000 * √(4 * S / π),
- D — диаметр сечения воздуховода;
- S — площадь сечения воздуховодов (в м²);
- π — число «пи», математическая константа, равная 3,14.
Затем полученное значение сравнивают с заводскими стандартами, которые одобрены ГОСТом, и выбирают изделия, максимально соответствующие размеру.
Если требуется выбрать прямоугольные воздуховоды, то вместо диаметра нужно определить параметры длины и ширины.
Выбор ведется на основе приблизительной оценки площади поперечного сечения, осуществляемой по принципу a*b ≈ S и с использованием таблиц, предоставляемых производителями. Также ключевым моментом будет соблюдение правила соотношения ширины (b) к длине (a), которое не должно превышать 1:3.
Трубы, имеющие прямоугольное или квадратное сечение, должны иметь оптимальную форму, позволяющую размещать их вдоль стены. Это будет полезно при установке жилых вытяжных зон и при прокладке воздуховодов над потолочными конструкциями или кухонными шкафами.
Общепринятые стандарты для прямоугольных воздуховодов находятся в пределах: минимальные размеры 100 мм x 150 мм, а максимальные — 2000 мм x 2000 мм. Круглые воздуховоды имеют малое сопротивление потока, тем самым создавая низкий уровень шумности.
В последние годы производители начали изготавливать пластиковые воздуховоды, специально предназначенные для жилья. Они отличаются удобством, безопасностью и легкостью в использовании.
Схема компоновки и план прокладки вентиляционных каналов системы вентиляции
При организации и монтажных работах систем приточного и вытяжного воздуха необходимо учитывать следующие факторы:
В таблице представлено распределение расчетов для воздуховодов круглого сечения.
- При удалении от вентиляционной камеры или вентилятора звуковые волны будут терять свою интенсивность, поэтому будет целесообразно установить их подальше от наименее шумных помещений.
- Дроссели рекомендуется размещать на максимальном удалении от помещения. Рекомендуется, чтобы после установления дроссельных устройств были установлены концевые глушители или гибкие вставки из звукоизолирующих материалов.
- Для всех каналов вентиляции рабочие скорости потока воздуха принимаются в соответствии с допустимыми значениями, исходя из класса помещений, их объемов и требований к фоновому шуму.
- На всех участках сети минимизировать гидравлические потери, так как уровень шума создаваемого работой вентилятора, тем выше, чем больше сопротивление на пути воздушного потока.
- Для систем с высокой производительностью обязательным условием для тихой работы является установка глушителей. Места, где будут находиться глушители, следует учитывать уже на стадии проектирования.
- Рекомендуется проводить наладку параметров аэродинамики, снижение уровня шума и наладку работы системы вентиляции одновременно, чтобы достичь приемлемого уровня шума при сохранении требующихся показателей расхода.
Особенности выбора вентилятора
При выборе вентилятора стоит обратить внимание на следующие важные требования:
Диаграмма шумовых характеристик для канальных вентиляторов.
- Устройство должно иметь минимальный уровень звука и быть в узком диапазоне звуковых волн, соответствующих условиям эксплуатации.
- Мощность вентилятора выбирается исходя из совокупных потерь, возникающих при перемещении воздуха по каналам сети.
- Не рекомендуется использовать вентиляторы с крыльчаткой, где количество лопастей менее 12, так как они могут создавать дополнительные шумы в воздуховоде при проходе через лопастной блок. Усиление шумов может происходить из-за отклонения воздушных потоков на лопастях и их последующего взаимодействия с внутренними стенками воздуховодов.
- На участках с регулируемым расходом необходимо дополнительно учитывать влияние изменения аэродинамических характеристик на уровень шума работы вентилятора. Изменения в угле наклона лопастей и снижение расхода могут значительно увеличить шум.
- Дополнительно регулировать уровень шума работы устройства можно за счет снижения частоты вращения рабочего колеса при сохранении постоянной мощности.
- Соединения вентилятора и воздуховода лучше соединять через мягкие вставки, которые гасит вибрации от вращающегося механизма, передающиеся на другие участки системы.
Рекомендуемые места установки вентиляторов
При проектировании малошумных вентиляционных систем, помимо выбора устройств с приемлемыми характеристиками шума, важно также оптимально выбрать место установки вентиляторов.
В проектируемом здании вентиляторы должны размещаться в специально спроектированных звукоизолированных помещениях — вентиляционных камерах. Эти камеры должны быть изолированы от помещений с повышенными требованиями к уровню тишины и комфорта. Их следует устанавливать вдали от лифтовых шахт и лестничных площадок, а также от дверей и окон.
Вентиляторы, монтируемые в открытых плоскостях, должны располагаться вдали от зеркальных поверхностей, от углов, и в местах, где передача шума в жилые и рабочие помещения, а также в окружающее здание сведена к минимуму.
Открытые воздуховоды должны быть установлены таким образом, чтобы шум не направлялся к жилым и общественным зданиям. Правильная ориентация воздуховодов в пространстве позволяет минимизировать шумовое загрязнение, исходящее от работы вентиляционных систем.
Правильное размещение и ориентация вентиляционных выходов в плане существенно снижает уровень шума, не требуя дополнительных затрат.
Программное обеспечение для выполнения расчетов
Хотя все расчеты можно выполнять вручную, более простым и эффективным методом остается использование специализированных программ.
С помощью таких программ можно не только точно производить необходимые расчеты, но и создавать графические планы.
Если необходимо, рекомендуется использовать специальное программное обеспечение для выполнения расчетов, которое позволяет избежать возможных ошибок, способных привести к серьезным последствиям в ходе эксплуатации. Вводимые исходные данные можно быстро обработать, получая точные расчеты.
Vent-Calc — это функционально оптимизированный инструмент для расчетов трубопроводов. Он базируется на значениях воздушного потока, скорости и температуры.
MagiCAD — программа, выполняющая все виды расчетов для инженерных систем, результаты которых отображаются в 2D и 3D форматах.
GIDRV — вычисляет все параметры воздуховодов и позволяет выбирать любую комбинацию, оптимизируя производительность.
Ducter 2.5 — утилита для детального расчета сечений воздуховодов, идеально подходит для выбора типа воздуховодов.
Чертежи, созданные при помощи этих программ, дают наглядное представление о расположении компонентов систем и способствуют их наиболее эффективной работе.
Измерение скорости и расхода воздуха
При проведении измерений необходимо выбирать правильные приборы и методику, а также следовать провереннымprocedures.
Приборы используемые для измерений
Наиболее часто применяются следующие инструменты для измерения:
- ультразвуковой 3D анемометр – осуществляет измерения, основываясь на изменениях частоты звука между заданными точками;
- трубка Пито – фиксирует разницу между статическим и полным давлением;
- термоанемометр – определяет скорость потока на основании скорости изменения температуры сенсора;
- крыльчатый анемометр – выполняет измерения, основываясь на вращении крыльчатки;
- болометр – фиксирует расход воздуха посредством концентрации потока в затупленной точке, предшествующей установке сечения.
Некоторые инструменты из этого списка могут быть довольно дорогими или труднодоступными. Вы можете приобрести оборудование и проводить замеры самостоятельно, но более разумно будет обратиться к опытному инженеру, который владеет секретами и тонкостями выполнения измерений.
Трубка Пито, например, применяется в паре с датчиками и является простым в использовании устройством. Открытой конец трубки помещается в поток воздуха, а второй конец подсоединяется к манометру для замера давления.
Проведение измерений скорости необходимо не только для расчетов, но и для оценки параметров обеспечиваемого воздуха в помещении. Постоянно используемые воздуховоды и диффузоры со временем могут загрязняться.
В таких случаях соединения могут начать пропускать, что негативно скажется на работе устройства. Измерения необходимы также и для регулярного технического обслуживания, уборки и ремонта вентиляционной системы.
При выполнении измерений следует соблюдать определенные нормы. Прежде всего, скорость движения воздуха регламентируется строительными нормами и стандартами, которые надо строго соблюдать.
Небольшие отклонения от данных значений допустимы при определенных технических условиях. Примером такого критерия может быть установка дополнительного оборудования или проведение ремонтных работ.
Во-вторых, во время измерений важно учитывать также регуляции по уровням шума и вибрации, указанные в нормативных документах.
При превышении этих значений система вентиляции считает неисправной, и скорость воздуха не должна оказывать влияния на эти параметры.
Методы выполнения замеров расхода воздуха
На этапе ввода в эксплуатацию необходимо измерить объемный расход системы вентиляции, что гарантирует правильное её функционирование и настройку.
Замеры выполняются непосредственно на воздуховоде либо на впускной решетке. Существует несколько простых методов:
1. Измерение на выходах с крыши.
Это замер чаще всего осуществляется с использованием вольтметра. Диффузор должен быть закрыт, а его верхняя часть должна быть заподлицо с крышей. Нуждаются в измерениях как общий объем воздуха, удаляемого из помещения, так и объем приточного воздуха.
Вольтметр обладает высокой точностью, поскольку встроенный выпрямитель потока снижает вероятность ошибок. Несмотря на кажущуюся громоздкость, устройство имеет относительно небольшой вес — менее 3 кг.
Некоторые источники рекомендуют использовать датчик, установленный между лопастями диффузора для получения среднего результата.
Правила использования измерительных устройств
Для правильного измерения скорости и расхода воздуха в системе вентиляции или кондиционирования весомым является выбор приборов, а также следование правилам эксплуатации приведенным ниже.
Следуя этим принципам, можно получить точную оценку системы воздуховодов и беспристрастное представление о системе вентиляции.
Для определения средней скорости потока требуется осуществить несколько измерений. Их количество определяется в зависимости от диаметра воздуховода или размера его сторон, если комбинированный формат.
Важно соблюдать температуры, указанные в технических паспортах используемых устройств. Также обратите внимание на положение датчика: он всегда должен быть направлен на поток воздуха.
Если эти условия игнорируются, результаты будут искажены. Чем больше датчик будет отклоняться от должного положения, тем больше ошибка в измерении.
В следующем видеоролике демонстрируется процесс измерения объема воздуха на вентиляционных решетках:
Учитывай, что следование правилам измерения имеет критическое значение, так как даже малейшая ошибка может повлиять на точность расчетов.
Правильный расчет воздуховодов позволит подобрать оптимальную конфигурацию воздуховодов и обеспечить надлежащие компоненты для бесперебойной и эффективной работы системы вентиляции.